## ELASTIC CONSTANTS OF AMMONIUM BROMIDE

at indicated that Br. Three differre used to obtain a pair of natural chanical cutting [100] direction er at 20°C were  $1.1935 \pm 0.0005$ ) was fly cut to d the length  $L_{20}$ 007 cm at 20°C. the atmosphere, all these crystals length measurevere applied to es in the elastic

calculated from C; this unit cell x-ray investigaelastic constants of temperature

(5)

 $\frac{2}{\delta^2}$ 

s the true roundound wave, and temperature T. I from the polyof Simon and ture x-ray data Obviously, the | cell dimensions tion that a large o small domains mains lying at 100] directions, t of the volume very good agreewhere the x-ray s change in  $L_T$ nuous variation data was used has a negligible lastic constants

is a function of e another pathne sample length  $\rho$  is the length at al applied prestemperature can

Acta Cryst. 14, Phys. Chem. 63, 1957). then be obtained as a function of pressure from equations of the type

$$C(p) = C(1 \text{ atm}) \left( \delta_1 / \delta_p \right)^2 s(p), \tag{6}$$

where  $\delta_1$  and  $\delta_p$  are the transit times corresponding to 1 atm and to a pressure p. In general, the calculation of s(p) requires a knowledge of the isothermal compressibility as a function of pressure. However, an excellent approximation to s(p) can be calculated directly from our present adiabatic velocity data<sup>18</sup> since the difference between the isothermal and adiabatic compressibilities is very small except in the immediate vicinity of the lambda point. [At 300°K and 1 atm,  $(\beta^T - \beta^S)/\beta^S$  is only 0.007.] Since s(p) values vary only between 1.00 and 1.02 for the pressure range 0 to 12 kbar, small uncertainties in the s(p) variation do not cause significant errors in the elastic constant values (which depend mostly on  $\delta_1/\delta_p$ ).



FIG. 3. Variation of  $c_{11}$  with temperature. Open circles represent data at 1 atm; for a definition of the symbols used for values at various constant volumes, see the legend of Fig. 5.

For measurements made at 1 atm, the quartz transducers were cemented to the sample with Dow resin 276-V9 as the seal material for all runs between 215° and 320°K. Below 215°K, these seals broke and Nonaq stopcock grease was used in a few runs despite the fact that it seemed to dissolve the sample slowly. Since the Dow resin was soluble in the hydraulic pressure fluid, it was necessary to find a new seal material for the high-pressure work. A polymer of phthalic anhydride and glycerin was found suitable<sup>12</sup> and was used for all the pressure runs.

The Dow resin and Nonaq seals were all very thin. Thus the phase shifts  $\gamma$  were small (between  $-5^{\circ}$  and  $-8^{\circ}$ ) at all temperatures, and the corrections to the transit times<sup>12</sup> due to phase shifts amounted to only 0.01% at 1 atm. Since all high-pressure measurements were carried out at a frequency equal to the resonance frequency of the transducer at 1 atm, there were appreciable changes in the phase shifts  $\gamma$  as a function of pressure. This effect of pressure on the behavior of



FIG. 4. Variation of C' with temperature. Open circles represent data at 1 atm; for a definition of the symbols used for values at various constant volumes, see the legend of Fig. 5.

the transducers is known<sup>14</sup> and was corrected for. The effect of pressure on the seal is not known and has been neglected.

## RESULTS

## Constant-Pressure Data

The open-circle points shown in Figs. 3–5 are experimental data points for the elastic constants  $c_{11}$ ,  $c_{44}$ , and C' as functions of temperature at 1 atm. Smooth-curve values of these directly measured quantities are presented in Table I together with the adiabatic bulk modulus  $1/\beta^s$ , which can be calculated from

$$1/\beta^{S} = c_{11} - 4C'/3. \tag{7}$$

Since the temperatures in Table I are all above the lambda point, all entries pertain to the disordered cubic phase of  $NH_4Br$ .



FIG. 5. Variation of  $c_{44}$  with temperature. Open circles represent data at 1 atm. Values at various constant volumes are distinguished by the symbols:  $X \cdots V_{12}$  ( $a_{12} = 4.040$  Å);  $\bigtriangledown \cdots V_{13}$  ( $a_{13} = 4.0425$  Å);  $\bigtriangleup \cdots V_{14}$  ( $a_{14} = 4.045$  Å);  $\Box \cdots V_{15}$  ( $a_{15} = 4.0476$  Å);  $\bigcirc \cdots V_{15}$  ( $a_{16} = 4.0496$  Å);  $\bigcirc \cdots V_{17}$  ( $a_{17} = 4.0517$  Å).

1115